Absolute value equation solution via concave minimization
نویسنده
چکیده
The NP-hard absolute value equation (AVE) Ax − |x| = b where A ∈ R and b ∈ Rn is solved by a succession of linear programs. The linear programs arise from a reformulation of the AVE as the minimization of a piecewise-linear concave function on a polyhedral set and solving the latter by successive linearization. A simple MATLAB implementation of the successive linearization algorithm solved 100 consecutively generated 1000-dimensional random instances of the AVE with only five violated equations out of a total of 100, 000 equations.
منابع مشابه
Absolute value programming
We investigate equations, inequalities and mathematical programs involving absolute values of variables such as the equation Ax + B|x| = b, where A and B are arbitrary m × n real matrices. We show that this absolute value equation is NP-hard to solve, and that solving it solves the general linear complementarity problem. However, we propose a concave minimization problem for its solution that i...
متن کاملLinear complementarity as absolute value equation solution
We consider the linear complementarity problem (LCP): Mz + q ≥ 0, z ≥ 0, z′(Mz + q) = 0 as an absolute value equation (AVE): (M + I)z + q = |(M − I)z + q|, where M is an n× n square matrix and I is the identity matrix. We propose a concave minimization algorithm for solving (AVE) that consists of solving a few linear programs, typically two. The algorithm was tested on 500 consecutively generat...
متن کاملA Smoothing Technique for the Minimum Norm Solution of Absolute Value Equation
One of the issues that has been considered by the researchers in terms of theory and practice is the problem of finding minimum norm solution. In fact, in general, absolute value equation may have infinitely many solutions. In such cases, the best and most natural choice is the solution with the minimum norm. In this paper, the minimum norm-1 solution of absolute value equation is investigated. ...
متن کاملA uniform approximation method to solve absolute value equation
In this paper, we propose a parametric uniform approximation method to solve NP-hard absolute value equations. For this, we uniformly approximate absolute value in such a way that the nonsmooth absolute value equation can be formulated as a smooth nonlinear equation. By solving the parametric smooth nonlinear equation using Newton method, for a decreasing sequence of parameters, we can get the ...
متن کاملChebyshev Inequalities with Law Invariant Deviation Measures
The consistency of law invariant general deviation measures, introduced by Rockafellar et al., with concave ordering has been used to generalize Rao-Blackwell theorem and to develop an approach for reducing minimization of law invariant deviation measures to minimization of the measures on subsets of undominated random variables with respect to concave ordering. This approach has been applied f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Letters
دوره 1 شماره
صفحات -
تاریخ انتشار 2007